Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.

Identifieur interne : 002457 ( Main/Exploration ); précédent : 002456; suivant : 002458

The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.

Auteurs : Kaifeng Ma [République populaire de Chine] ; Yuepeng Song ; Zhen Huang ; Liyuan Lin ; Zhiyi Zhang ; Deqiang Zhang

Source :

RBID : pubmed:23224581

Descripteurs français

English descriptors

Abstract

KEY MESSAGE : We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process. Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa "Pt02" × P. × tomentosa "LM50", and (P. × tomentosa × P. alba cv. bolleana "Ptb") × P. × tomentosa "LM50". The seed set potential in the intraspecific hybridization P. × tomentosa "Pt02" × P. × tomentosa "LM50" was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of LEC1 and FUS3 may cause embryonic abortion. Identification and eventual bypassing of these barriers may allow future genetic improvement of this key woody crop species.

DOI: 10.1007/s00299-012-1373-2
PubMed: 23224581


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.</title>
<author>
<name sortKey="Ma, Kaifeng" sort="Ma, Kaifeng" uniqKey="Ma K" first="Kaifeng" last="Ma">Kaifeng Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, 100083 Beijing, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, 100083 Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</author>
<author>
<name sortKey="Huang, Zhen" sort="Huang, Zhen" uniqKey="Huang Z" first="Zhen" last="Huang">Zhen Huang</name>
</author>
<author>
<name sortKey="Lin, Liyuan" sort="Lin, Liyuan" uniqKey="Lin L" first="Liyuan" last="Lin">Liyuan Lin</name>
</author>
<author>
<name sortKey="Zhang, Zhiyi" sort="Zhang, Zhiyi" uniqKey="Zhang Z" first="Zhiyi" last="Zhang">Zhiyi Zhang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23224581</idno>
<idno type="pmid">23224581</idno>
<idno type="doi">10.1007/s00299-012-1373-2</idno>
<idno type="wicri:Area/Main/Corpus">002775</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002775</idno>
<idno type="wicri:Area/Main/Curation">002775</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002775</idno>
<idno type="wicri:Area/Main/Exploration">002775</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.</title>
<author>
<name sortKey="Ma, Kaifeng" sort="Ma, Kaifeng" uniqKey="Ma K" first="Kaifeng" last="Ma">Kaifeng Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, 100083 Beijing, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, 100083 Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</author>
<author>
<name sortKey="Huang, Zhen" sort="Huang, Zhen" uniqKey="Huang Z" first="Zhen" last="Huang">Zhen Huang</name>
</author>
<author>
<name sortKey="Lin, Liyuan" sort="Lin, Liyuan" uniqKey="Lin L" first="Liyuan" last="Lin">Liyuan Lin</name>
</author>
<author>
<name sortKey="Zhang, Zhiyi" sort="Zhang, Zhiyi" uniqKey="Zhang Z" first="Zhiyi" last="Zhang">Zhiyi Zhang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chimera (MeSH)</term>
<term>Fertility (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gibberellins (metabolism)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Pollen Tube (anatomy & histology)</term>
<term>Pollen Tube (genetics)</term>
<term>Pollen Tube (growth & development)</term>
<term>Pollen Tube (physiology)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>RNA, Plant (genetics)</term>
<term>Reproduction (MeSH)</term>
<term>Seeds (anatomy & histology)</term>
<term>Seeds (genetics)</term>
<term>Seeds (growth & development)</term>
<term>Seeds (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Acides indolacétiques (métabolisme)</term>
<term>Chimère (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Fécondité (MeSH)</term>
<term>Gibbérellines (métabolisme)</term>
<term>Graines (anatomie et histologie)</term>
<term>Graines (croissance et développement)</term>
<term>Graines (génétique)</term>
<term>Graines (physiologie)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Reproduction (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tube pollinique (anatomie et histologie)</term>
<term>Tube pollinique (croissance et développement)</term>
<term>Tube pollinique (génétique)</term>
<term>Tube pollinique (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Gibberellins</term>
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Graines</term>
<term>Populus</term>
<term>Tube pollinique</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Pollen Tube</term>
<term>Populus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Graines</term>
<term>Populus</term>
<term>Tube pollinique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pollen Tube</term>
<term>Populus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Pollen Tube</term>
<term>Populus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Graines</term>
<term>Populus</term>
<term>Tube pollinique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Facteur de croissance végétal</term>
<term>Gibbérellines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Graines</term>
<term>Populus</term>
<term>Tube pollinique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Pollen Tube</term>
<term>Populus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chimera</term>
<term>Fertility</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation, Plant</term>
<term>Hybridization, Genetic</term>
<term>Reproduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chimère</term>
<term>Expression des gènes</term>
<term>Fécondité</term>
<term>Hybridation génétique</term>
<term>Reproduction</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">KEY MESSAGE : We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process. Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa "Pt02" × P. × tomentosa "LM50", and (P. × tomentosa × P. alba cv. bolleana "Ptb") × P. × tomentosa "LM50". The seed set potential in the intraspecific hybridization P. × tomentosa "Pt02" × P. × tomentosa "LM50" was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of LEC1 and FUS3 may cause embryonic abortion. Identification and eventual bypassing of these barriers may allow future genetic improvement of this key woody crop species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23224581</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.</ArticleTitle>
<Pagination>
<MedlinePgn>401-14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-012-1373-2</ELocationID>
<Abstract>
<AbstractText>KEY MESSAGE : We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process. Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa "Pt02" × P. × tomentosa "LM50", and (P. × tomentosa × P. alba cv. bolleana "Ptb") × P. × tomentosa "LM50". The seed set potential in the intraspecific hybridization P. × tomentosa "Pt02" × P. × tomentosa "LM50" was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of LEC1 and FUS3 may cause embryonic abortion. Identification and eventual bypassing of these barriers may allow future genetic improvement of this key woody crop species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Kaifeng</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, 100083 Beijing, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yuepeng</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Zhen</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Liyuan</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhiyi</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6U1S09C61L</RegistryNumber>
<NameOfSubstance UI="C030737">indoleacetic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BU0A7MWB6L</RegistryNumber>
<NameOfSubstance UI="C007842">gibberellic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005298" MajorTopicYN="N">Fertility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053205" MajorTopicYN="N">Pollen Tube</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012098" MajorTopicYN="N">Reproduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23224581</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-012-1373-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1037-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jun 26;93(7):1195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Feb;6(1):51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Feb;108(4):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14564399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(394):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 May;14(5):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S15-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Mar 7;319(5868):1384-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Jun;86(6):855-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10371727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Aug;31(8):1393-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3660-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Jan;97(1):123-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):358-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Dec;6(12):1731-1745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Oct;5(10):1325-1335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Oct;4(10):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1332796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Oct;9(5):454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16870490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:235-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1987 Apr;87 ( Pt 3):483-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3429498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jun;91(7):807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Aug;125(16):3027-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Mar;21(5):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Jan 27;56(2):149-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2643470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1980 Nov;58(6):273-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(2):143-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10743655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1967 Feb 18;213(5077):669-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6031770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Nov;100(3):1346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Mar;8(3):429-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8721749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 Nov;124(6):675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21249418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2563-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767455</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Huang, Zhen" sort="Huang, Zhen" uniqKey="Huang Z" first="Zhen" last="Huang">Zhen Huang</name>
<name sortKey="Lin, Liyuan" sort="Lin, Liyuan" uniqKey="Lin L" first="Liyuan" last="Lin">Liyuan Lin</name>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<name sortKey="Zhang, Zhiyi" sort="Zhang, Zhiyi" uniqKey="Zhang Z" first="Zhiyi" last="Zhang">Zhiyi Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ma, Kaifeng" sort="Ma, Kaifeng" uniqKey="Ma K" first="Kaifeng" last="Ma">Kaifeng Ma</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23224581
   |texte=   The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23224581" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020